Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose that a function f: R → R satisfies f(x+y)=f(x) f(y) for all x, y ∈ R and f(1)=3. If displaystyle∑i=1n f(i)=363, then n is equal to .
Q. Suppose that a function
f
:
R
→
R
satisfies
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
for all
x
,
y
∈
R
and
f
(
1
)
=
3
. If
i
=
1
∑
n
f
(
i
)
=
363
,
then
n
is equal to _____.
2567
216
JEE Main
JEE Main 2020
Sequences and Series
Report Error
Answer:
5.00
Solution:
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
put
x
=
y
=
1
f
(
2
)
=
(
f
(
1
)
)
2
=
3
2
put
x
=
2
,
y
=
1
f
(
3
)
=
(
f
(
1
)
)
3
=
3
3
⋮
Similarly
f
(
x
)
=
3
x
i
=
1
∑
n
f
(
i
)
=
363
⇒
i
=
1
∑
n
3
i
=
363
(
3
+
3
2
+
…
+
3
n
)
=
363
2
3
(
3
n
−
1
)
=
363
3
n
−
1
=
242
⇒
3
n
=
243
⇒
n
=
5