Given, sin3xsin3x=m=0∑nCm cos nx is an identity in x
where, C0,C1,....,Cnconstants. sin3xsin3x=41{3sinx−sin3x}.sin3x =41(23.2sinx.sin3x−sin23x) =41{23(cso2x−cosx)−21(1−cos6x)} =81(cos6x+3cos2x=3cosx−1) ∴ On comparing both sides, we get n = 6