Q.
Suppose l,m,n respectively represent the coefficient of x10, the constant term and the coefficient of x−10 in the expansion of (ax2+x3b)15.If ml+nm=1126, then a2:b2=
Given binomial (ax2+x3b)15,
so the general term, Tr+1=15Cra15−rbrx30−5r ∴ The coefficient of x10 is ( at r=4 ) =15Cua11b4= (given)
Similarly, m= the constant term (at r=6 ) =15C6a9b6
and n= coefficient of x−10 is ( at r=8)=15C8a7b8 ∵ml+nm=1126 ⇒15C6a9b615C4a11b4+15C8a7b815C6a9b6=1126 ⇒4!111b26!9!a2+6!9!b28!7!a2=1126 ⇒11×106×5(b2a2)+97(b2a2)=1126 ⇒b2a2(113+97)=1126 ⇒b2a2(9927+77)=1126 ⇒b2a2=1049×26=49