Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose J=∫ ( sin 2 x+ sin x/1+ sin x+ cos x) d x and K=∫ ( cos 2 x+ cos x/1+ sin x+ cos x) d x. If C is an arbitrary constant of integration then which of the following is/are correct?
Q. Suppose
J
=
∫
1
+
s
i
n
x
+
c
o
s
x
s
i
n
2
x
+
s
i
n
x
d
x
and
K
=
∫
1
+
s
i
n
x
+
c
o
s
x
c
o
s
2
x
+
c
o
s
x
d
x
. If
C
is an arbitrary constant of integration then which of the following is/are correct?
268
132
Integrals
Report Error
A
J
=
2
1
(
x
−
sin
x
+
cos
x
)
+
C
49%
B
J
=
K
−
(
sin
x
+
cos
x
)
+
C
35%
C
J
=
x
−
K
+
C
119%
D
K
=
2
1
(
x
−
sin
x
+
cos
x
)
+
C
38%
Solution:
J
+
K
=
∫
1
+
s
i
n
x
+
c
o
s
x
1
+
s
i
n
x
+
c
o
s
x
d
x
J
+
K
=
x
+
C
(1)
⇒
(C)
again
J
−
K
=
∫
1
+
s
i
n
x
+
c
o
s
x
(
s
i
n
2
x
−
c
o
s
2
x
)
+
s
i
n
x
−
c
o
s
x
d
x
=
∫
1
+
s
i
n
x
+
c
o
s
x
(
s
i
n
x
−
c
o
s
x
)
(
s
i
n
x
+
c
o
s
x
+
1
)
d
x
J
−
K
=
−
cos
x
−
sin
x
+
C
....(2)
hence
J
=
K
−
(
sin
x
+
cos
x
)
+
C
⇒
(B)
Also (1)
+
(
2
)
2
J
=
x
−
(
cos
x
+
sin
x
)
+
C
J
=
2
1
[
x
−
sin
x
−
cos
x
]
+
C
and
(
1
)
−
(
2
)
2
K
=
x
+
(
sin
x
+
cos
x
)
+
C
K
=
2
1
(
x
+
sin
x
+
cos
x
)
+
C
from (1),
J
=
x
−
K
+
C
⇒
(C)