Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose f: R arrow(0, ∞) be a differentiable function such that 5 f(x+y)=f(x) ⋅ f(y), ∀ x, y ∈ R. If f(3)=320, then displaystyle∑n=05 f( n ) is equal to :
Q. Suppose
f
:
R
→
(
0
,
∞
)
be a differentiable function such that
5
f
(
x
+
y
)
=
f
(
x
)
⋅
f
(
y
)
,
∀
x
,
y
∈
R
. If
f
(
3
)
=
320
, then
n
=
0
∑
5
f
(
n
)
is equal to :
1467
132
JEE Main
JEE Main 2023
Relations and Functions - Part 2
Report Error
A
6575
9%
B
6825
64%
C
6875
27%
D
6525
0%
Solution:
5
f
(
x
+
y
)
=
f
(
x
)
⋅
f
(
y
)
5
f
(
0
)
=
f
(
0
)
2
⇒
f
(
0
)
=
5
5
f
(
x
+
1
)
=
f
(
x
)
⋅
f
(
1
)
⇒
f
(
x
)
f
(
x
+
1
)
=
5
f
(
1
)
⇒
f
(
0
)
f
(
1
)
⋅
f
(
1
)
f
(
2
)
⋅
f
(
2
)
f
(
3
)
=
(
5
f
(
1
)
)
3
⇒
5
320
=
5
3
(
f
(
1
)
)
3
⇒
f
(
1
)
=
20
∴
5
f
(
x
+
1
)
=
20
⋅
f
(
x
)
⇒
f
(
x
+
1
)
=
4
f
(
x
)
n
=
0
∑
5
f
(
n
)
=
5
+
5.4
+
5.
4
2
+
5.
4
3
+
5.
4
4
+
5.
4
5
=
3
5
[
4
6
−
1
]
=
6825