Q.
Suppose f is a real valued differentiable function defined on [1,∞) with f(1)=1 such that f satisfies f′(x)=x2+f2(x)1 then value of f(x) can not exceed.
f′(x)=x2+f2(x)1>0 ⇒f(x) is an increasing function ∀x>1
Now f′(x)=x2+f2(x)1≤x2+11∀x≥1 1∫xf′(x)dx≤1∫x(x2+11)dx f(x)−1≤tan−1x−4π x→∞limf(x)−1≤π/2−4π ⇒x→∞limf(x)≤1+4π