Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose det[ displaystyle ∑k=0n k displaystyle ∑k=0nnCkk2 displaystyle ∑k=0nnCkk displaystyle ∑k=0nnCk3k]=0, holds for some positive integern. Then ∑ limitsnk = 0 (nCk/k+1) equals
Q. Suppose
det
⎣
⎡
k
=
0
∑
n
k
k
=
0
∑
n
n
C
k
k
2
k
=
0
∑
n
n
C
k
k
k
=
0
∑
n
n
C
k
3
k
⎦
⎤
=
0
, holds for some positive integern. Then
k
=
0
∑
n
k
+
1
n
C
k
equals
2072
237
JEE Advanced
JEE Advanced 2019
Report Error
Answer:
6.2
Solution:
∣
∣
2
n
(
n
+
1
)
n
.
2
n
−
1
n
(
n
−
1
)
.
2
n
−
2
4
n
n
+
n
.
2
n
−
1
∣
∣
=
0
2
n
(
n
+
1
)
.
4
n
−
n
2
(
n
−
1
)
.
2
2
n
−
3
−
n
2
2
2
n
−
2
=
0
2
n
(
n
+
1
)
−
8
n
2
(
n
−
1
)
−
4
n
2
=
0
n
2
−
3
n
−
4
=
0
n
=
4
Now
k
=
0
∑
4
k
+
1
4
C
k
=
k
=
0
∑
4
5
k
+
1
.
5
C
k
+
1
k
+
1
1
=
5
1
.
[
5
C
1
+
5
C
2
+
5
C
3
+
5
C
4
+
5
C
5
]
=
5
1
[
2
5
−
1
]
=
5
31
=
6.20