Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose a ∈ R. Let f(x)=| x+a x x x x+a x x x x+a | Then f(2 x)-f(x) is equal to
Q. Suppose
a
∈
R
. Let
f
(
x
)
=
∣
∣
x
+
a
x
x
x
x
+
a
x
x
x
x
+
a
∣
∣
Then
f
(
2
x
)
−
f
(
x
)
is equal to
69
140
Determinants
Report Error
A
3
x
a
2
B
3
x
2
a
C
x
a
2
D
a
2
x
Solution:
Write
f
(
x
)
=
Δ
1
+
x
Δ
2
where
Δ
1
=
∣
∣
a
0
0
x
x
+
a
x
x
x
x
+
a
∣
∣
=
a
[
(
x
+
a
)
2
−
x
2
]
=
2
x
a
2
+
a
3
and
Δ
2
=
∣
∣
1
1
1
x
x
+
a
x
x
x
x
+
a
∣
∣
=
∣
∣
1
0
0
x
a
0
x
0
a
∣
∣
=
a
2
Thus
f
(
x
)
=
2
x
a
2
+
a
3
+
x
a
2
=
3
x
a
2
+
a
3
∴
f
(
2
x
)
−
f
(
x
)
=
3
x
a
2