Since, a,b,c are in AP. ∴a=A−D,b=A,c=A+D
Where, A is the first term and D is the common difference of an AP.
Given, a+b+c=23 ⇒(A−D)+A+(A+D)=23 ⇒3A=23 ⇒A=21 ∴ The numbers are 21−D,21,21+D
Also, (21−D)2,41,(21+D)2 are in GP. ⇒(41)2=(21−D)2(21+D)2 ⇒161=(41−D2)2 ⇒41−D2=±41 ⇒D2=(21D=0 is not possible) ⇒D=±21 ∴a=21±21
So, out of the given value a=21−21 is the right choice.