Taking eiA, common from R1,eiB from R2 and eiC from R3, we get Δ=ei(A+B+C)Δ1
where Δ1=∣∣eiAe−i(B+C)e−i(B+C)e−i(A+C)eiBe−i(A+C)e−i(A+B)e−i(A+B)eiC∣∣
But A+B+C=π, so that ei(A+B+C)=eiπ =cosπ+isinπ=−1. Also, A+C=π−B⇒e−i(A+C)=e−πieiB=−eiB.
Thus,Δ1=∣∣eiA−e−iA−eiA−eiBeiB−eiB−eiC−eiCeiC∣∣ =ei(A+B+C)∣∣1−1−1−11−1−1−11∣∣
Using C1→C1+C2, we get Δ1=(−1)∣∣00−2−11−1−1−11<br/>∣∣=(−1)(−2)(2)=4
Therefore, Δ=(−1)Δ1=−4