Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∑nr = 1 (2r - 1) = x then limn → ∞ [ (13/x2) + (23/x2) + (33/x2) + ...... + (n3/x2) ]=
Q.
∑
r
=
1
n
(
2
r
−
1
)
=
x
then
lim
n
→
∞
[
x
2
1
3
+
x
2
2
3
+
x
2
3
3
+
......
+
x
2
n
3
]
=
4156
164
KCET
KCET 2019
Limits and Derivatives
Report Error
A
1
20%
B
2
1
30%
C
4
23%
D
4
1
27%
Solution:
x
=
1
+
3
+
5
+
………………
..
+
(
2
n
−
1
)
x
=
n
2
x
2
=
n
4
∴
l
i
m
n
→
∞
[
x
2
1
3
+
2
3
+
.
+
n
3
]
∴
l
i
m
n
→
∞
[
n
4
4
n
2
(
n
+
1
)
2
]
l
i
m
n
→
∞
4
n
4
n
2
.
n
2
(
1
+
n
1
)
2
∴
l
i
m
n
→
∞
4
(
1
+
n
1
)
2
=
4
1