Q.
Sum of the squares of all integral values of a for which the inequality x2+ax+a2+6a<0 is satisfied for all x∈(1,2) must be equal to
2117
197
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Let, f(x)=x2+ax+a2+6a ∴f(1)≤0 ⇒a2+7a+1<0
or 2−7−35<a<2−7+35 ....(i) f(2)≤0 ⇒a2+8a+4<0
or −4−23<a<−4+23 ....(ii)
and D>0 ⇒a2−4⋅1(a2+6a)>0 ⇒a2+8a<0
or −8<a<0 ....(iii)
From Eqs. (i), (ii) and (iii), we get, 2−7−35≤a≤−4+23
Hence, integral values of a are −6,−5,−4,−3,−2,−1
Required Sum =(−6)2+(−5)2+(−4)2+(−3)2+(−2)2+(−1)2 =91 .