Given terms are 3,5,9,17,33,....
Series formed from the differences of the given series is
2,4,8,16,...∈G.P. ∴...tn=A2n−1+B ⇒t1=3,t2=5 (Using 3=A+B and 5=2A+B ⇒A=2,B=1) ∴tn=2n+1 ∴Sn=Σtn=Σ(2n+1) =Σ2n+Σ1=2(2n−1)+n=2n+1+n−2 Short Cut Method : Sn=3+5+9+17+33+..... =(2+1)+(22+1)+(23+1)+(24+1)+...... =(2+22+23+24+...nterms)+n =2(2n−1)+n=2n+1+n−2