Let the first term is A and common difference is d.
Given, Sp=a ⇒2p[2A+(p−1)d]=a....(i) Sq=b⇒2q[2A+(q−1)d]=b.....(ii)
and Sr=c⇒2r[2A+(r−1)d]=c.....(iii) {∵Sn=2n[2a+(n−1)d]}
Consider =pa(q−r)+qb(r−p)+rc(p−q) =p1×2p[2A+(p−1)d](q−r)+q1×2q [2A+(q−1)d](r−p)+r1×2r[2A+(r−1)d](p−q)
[using Eqs. (i), (ii) and (iii)] =21[{2A+(p−1)d}(q−r)+{2A+(q−1)d}(r−p) +{2A+(r−1)d}(p−q)] =21[2A(q−r)+(p−1)d(q−r)+2A(r−p) +(q−1)d(r−p)+2A(p−q)+(r−1)d(p−q)] =21[2A(q−r+r−p+p−q) +d[(p−1)(q−r)+(q−1)(r−p)+(r−1)(p−q)] =21[2A×(0)+d(pq−pr−q+r +qr−pq−r+p+rp−rq−p+q] =21(0+d×0)=0