Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Sum of squares of the first n natural numbers i.e., 12+22+32+42+ ldots ldots+n2 is
Q. Sum of squares of the first
n
natural numbers i.e.,
1
2
+
2
2
+
3
2
+
4
2
+
……
+
n
2
is
47
163
Sequences and Series
Report Error
A
S
n
=
6
n
(
n
−
1
)
(
2
n
−
1
)
B
S
n
=
4
n
(
n
+
1
)
(
2
n
+
1
)
C
S
n
=
4
n
(
n
+
1
)
(
2
n
−
1
)
D
S
n
=
6
n
(
n
+
1
)
(
2
n
+
1
)
Solution:
Here,
S
n
=
1
2
+
2
2
+
3
2
+
…
+
n
2
Consider the identity,
K
3
−
(
K
−
1
)
3
=
3
K
2
−
3
K
+
1
Putting
K
=
1
,
2
,
⋯
,
n
successively, we obtain
1
3
−
0
3
=
3
(
1
)
2
−
3
(
1
)
+
1
2
3
−
1
3
=
3
(
2
)
2
−
3
(
2
)
+
1
3
3
−
2
3
=
3
(
3
)
2
−
3
(
3
)
+
1
........................
........................
.........................
n
3
−
(
n
−
1
)
3
=
3
(
n
)
2
−
3
(
n
)
+
1
Adding both sides, we get
n
3
−
0
3
=
3
(
1
2
+
2
2
+
3
2
+
4
2
+
…
+
n
2
)
−
3
(
1
+
2
+
…
+
n
)
+
n
n
3
=
3
k
=
1
∑
n
K
2
−
3
k
=
1
∑
n
K
+
n
Now,
S
n
=
K
=
1
∑
n
K
2
=
3
1
[
n
3
+
3
K
=
1
∑
n
K
−
n
]
=
3
1
[
n
3
+
2
3
n
(
n
+
1
)
−
n
]
[
∵
k
=
1
∑
n
K
=
1
+
2
+
3
+
…
+
n
=
2
n
(
n
+
1
)
]
=
6
1
(
2
n
3
+
3
n
2
+
3
n
−
2
n
)
=
6
1
(
2
n
3
+
3
n
2
+
n
)
=
6
n
(
n
+
1
)
(
2
n
+
1
)