Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Sum of cubes of the first n natural numbers i.e., 13+23+33+43+ ldots ldots+n3 is
Q. Sum of cubes of the first
n
natural numbers i.e.,
1
3
+
2
3
+
3
3
+
4
3
+
……
+
n
3
is
123
164
Sequences and Series
Report Error
A
4
[
n
(
n
+
2
)
]
2
0%
B
4
[
n
(
n
+
1
)
]
2
100%
C
4
[
n
(
n
−
1
)
]
2
0%
D
2
[
n
(
n
+
1
)
]
2
0%
Solution:
Here,
S
n
=
1
3
+
2
3
+
3
3
+
⋯
+
n
3
∵
(
k
+
1
)
4
−
k
4
=
4
k
3
+
6
k
2
+
4
k
+
1
Putting
k
=
1
,
2
,
3
,
…
,
n
, we get
2
4
−
1
4
=
4
(
1
)
3
+
6
(
1
)
2
+
4
(
1
)
+
1
3
4
−
2
4
=
4
(
2
)
3
+
6
(
2
)
2
+
4
(
2
)
+
1
4
4
−
3
4
=
4
(
3
)
3
+
6
(
3
)
2
+
4
(
3
)
+
1
.................
..............
.................
(
n
−
1
)
4
−
(
n
−
2
)
4
=
4
(
n
−
2
)
3
+
6
(
n
−
2
)
2
+
4
(
n
−
2
)
+
1
n
4
−
(
n
−
1
)
4
=
4
(
n
−
1
)
3
+
6
(
n
−
1
)
2
+
4
(
n
−
1
)
+
1
(
n
+
1
)
4
−
n
4
=
4
n
3
+
6
n
2
+
4
n
+
1
Adding both sides, we get
(
n
+
1
)
4
−
1
4
=
4
(
1
3
+
2
3
+
…
+
n
3
)
+
6
(
1
2
+
2
2
+
3
3
+
…
+
n
2
)
+
4
(
1
+
2
+
3
+
…
+
n
)
+
n
=
4
k
=
1
∑
n
k
3
+
6
k
=
1
∑
n
k
2
+
4
k
=
1
∑
n
k
+
n
∵
k
=
1
∑
n
k
=
2
n
(
n
+
1
)
and
k
=
1
∑
n
k
2
=
6
n
(
n
+
1
)
(
2
n
+
1
)
∴
4
k
=
1
∑
n
k
3
=
n
4
+
4
n
3
+
6
n
2
+
4
n
−
6
(
6
n
(
n
+
1
)
(
2
n
+
1
)
)
−
4
(
2
n
(
n
+
1
)
)
−
n
⇒
4
S
n
=
n
4
+
4
n
3
+
6
n
2
+
4
n
−
n
(
2
n
2
+
3
n
+
1
)
−
2
n
(
n
+
1
)
−
n
=
n
4
+
2
n
3
+
n
2
=
n
2
(
n
2
+
2
n
+
1
)
=
n
2
(
n
+
1
)
2
Hence,
S
n
=
4
n
2
(
n
+
1
)
2
S
n
=
4
[
n
(
n
+
1
)
]
2