I. Consider, tan−141+tan−192 =tan−1(1−41×9241+92)=tan−1(36−29+8) =tan−1(3417)=tan−1(21)
Now, let tan−121=θ⇒tanθ=21 ∴secθ=1+(21)2(∵secθ=1+tan2θ) =25 cosθ=52 sinθ=1−54(∵sinθ=1−cos2θ) =51⇒θ=sin−151 ∴ Statement I is true.
II. LHS=sin−1178+sin−153 =sin−1[1781−(53)2+531−(178)2] [∵sin−1x+sin−1y=sin−1(x1−y2+y1−x2)] =sin−1[178×54+53×1715] =sin−1[8532+45]=sin−18577= RHS
Thus, statement II is also true.