Three points A,B and C are collinear if ∣AC∣=∣AB∣+∣BC∣
The given points are A(1,−2,−8),B(5,0,−2) and (11,3,7) AB=PV of B−PV of A=(5i^+0j^−2k^)−(i^−2j^−8k^) =4i^+2j+6k^ ∣AB∣=42+22+62=16+4+36=56=214 BC=PV of C−PV of B=(11i^+3j+7k^)−(5i^+0j^−2k^) 6i^+3j^+9k^ ∣BC∣=62+32+92=36+9+81=126=314 AC=PV of C−PV of A=(11i^+3j^+7k^)−(i^−2j^−8k^) =10i^+5j^+15k^ ∣AC∣=102+52+152=514 ∴∣AC∣=∣AB∣+∣BC∣
Thus, the given points A,B and C are collinear.
Let P be the point ( on the line AC) which divides AC in the ratio λ:1, then PV of the point P=λ+1λ×PV of C+1×PV of A =λ+11{λ(1i^+3j^+7k^)+1(i^−2j^−8k^)} =(λ+111λ+1)i^+(λ+13λ−2)j^+(λ+17λ−8)k^ B lies on line AC i.e., B is collinear with A and C, if P=B for a unique λ ⇒(λ+111λ+1)i^+(λ+13λ−2)j^+(λ+17λ−8)k^=5i^+0j^−2k^ ⇒λ+111λ+1=5,λ+13λ−2=0 and λ+17λ−8=−2 ⇒11λ+1=5λ+5,3λ=2,7λ−8=−2λ−2 ⇒6λ=4,λ=32,9λ=6 ⇒λ=32
Hence, A,B,C are collinear and B divides AC in the ratio 32:1 i.e. 2:3
So, both the statements are true.