Q.
Statement I : The equation (sin−1x)3+(cos−1x3)−aπ3=0 has a solution for all a≥321. Statement II : For any xϵR,sin−1x+cos−1x=2π and 0≤(sin−1x−4π)2≤169π2.
(sin−1x)3+(cos−1x)3−aπ3=0 ⇒(sin−1x+cos−1x)[(sin−1x)2−sin−1xcos−1x+(cos−1x)2]=aπ3 ⇒2π[(sin−1x+cos−1x)2−3sin−1xcos−1x]=aπ3π2 ⇒(2π)2−3sin−1x(2π−sin−1x)=2aπ2 ⇒34π2−2aπ2=2π(sin−1x)−(sin−1x)2 ⇒12π2−8aπ2=2π(sin−1x)−(sin−1x)2 ⇒(sin−1x)2−2πsin−1x+(4π)2=(4π)2−12π2−8aπ2 ⇒(sin−1x−4π)2=16π2−12π2+12382aπ2=4832aπ2−π2
Now −2π≤sin−1x≤2π ⇒2−π−4π≤sin−1x−4π≤2π−4π
or 4−3π≤sin−1x−4π≤4π ⇒0≤(sin−1x−4π)2≤169π2
Therefore, 0≤4832aπ2−π2≤169π2 ⇒0≤4832a−1≤169 ⇒0≤32a−1≤27 ⇒1≤32a≤28 ⇒321≤a≤3228 ⇒a∈[321,87]
Therefore, Statement I is false and II is true.