Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Statement I tan -1 x+ tan -1 (2 x/1-x2)= tan -1((3 x-x3/1-3 x2)),|x|<(1/√3) Statement II The value of cos ( sec -1 x+ operatornamecosec-1 x), |x|>1 is 1 .
Q.
Statement I
tan
−
1
x
+
tan
−
1
1
−
x
2
2
x
=
tan
−
1
(
1
−
3
x
2
3
x
−
x
3
)
,
∣
x
∣
<
3
1
Statement II
The value of
cos
(
sec
−
1
x
+
cosec
−
1
x
)
,
∣
x
∣
>
1
is 1 .
101
147
Inverse Trigonometric Functions
Report Error
A
Only I is true
B
Only II is true
C
Both I and II are true
D
Neither I nor II is true
Solution:
I. Let
x
=
tan
θ
. Then,
θ
=
tan
−
1
x
. We have,
R
H
S
=
tan
−
1
(
1
−
3
x
2
3
x
−
x
3
)
=
tan
−
1
(
1
−
3
t
a
n
2
θ
3
t
a
n
θ
−
t
a
n
3
θ
)
=
tan
−
1
(
tan
3
θ
)
=
3
θ
=
3
tan
−
1
x
=
tan
−
1
x
+
2
tan
−
1
x
=
tan
−
1
x
+
tan
−
1
1
−
x
2
2
x
=
LHS
II. We have,
cos
(
sec
−
1
x
+
cosec
−
1
x
)
=
cos
(
2
π
)
=
0