Q.
Statement I Roots of quadratic equation x2+3x+5=0 is x=2−3±i11. Statement II If x2−x+2=0 is a quadratic equation, then its roots are 21±i7.
71
188
Complex Numbers and Quadratic Equations
Report Error
Solution:
I. Given, x2+3x+5=0
On comparing the given equation with ax2+bx+c=0, we get a=1,b=3,c=5
Now, D=b2−4ac=(3)2−4×1×5=9−20=−11<0 ⇒x=2×1−3±−11 ∴x=2−3±i11(∵−1=i)
II. Given, x2−x+2=0
On comparing the given equation with ax2+bx+c=0, we get a=1,b=−1,c=2
Now, D=b2−4ac=(−1)2−4×1×2=1−8=−7<0 ⇒x=2×1−(−1)±−7 =21±i7(∵−1=i)