Q.
Statement I Let z1 and z2 be two complex numbers such that ∣z1+z2∣=∣z1∣+∣z2∣, then arg(z1)−arg(z2)=0 Statement II arg(z2z1)=arg(z1)−arg(z2).
282
169
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z1=r1(cosθ1+isinθ1) and z2=r2(cosθ2+isinθ2)
where r1=∣z1∣,arg(z1)=θ1,r2=∣z2∣,arg(z2)=θ2
we have, ∣z1+z2∣=∣z1∣+∣z2∣=∣r1(cosθ1+cosθ2)+r2(cosθ2+sinθ2)∣=r1+r2 r12+r22+2r1r2cos(θ1θ2)=(r1+r2)2 ⇒cos(θ1−θ2)=1 ⇒θ1−θ2=0⇒θ1=θ2 i.e; argz1=argz2