- Tardigrade
- Question
- Mathematics
- Statement-I: displaystyle∑ r =0 n -1 (1/ n )(√( r / n )+1)<∫ limits01(√ x +1) dx < displaystyle∑ r =1 n (1/ n )(√( r / n )+1), n ∈ N. because Statement-II: If f( x ) is continuous and increasing in [0, 1], then displaystyle∑ r =0 n -1 (1/ n ) f(( r / n ))<∫ limits01 f( x ) dx < displaystyle∑ r =1 n (1/ n ) f(( r / n )), where n ∈ N
Q.
Statement-I : . because
Statement-II : If is continuous and increasing in [0, 1], then , where
Solution: