Q.
Statement-I : $ \displaystyle\sum_{ r =0}^{ n -1} \frac{1}{ n }\left(\sqrt{\frac{ r }{ n }}+1\right)<\int\limits_0^1(\sqrt{ x }+1) dx < \displaystyle\sum_{ r =1}^{ n } \frac{1}{ n }\left(\sqrt{\frac{ r }{ n }}+1\right), n \in N$. because
Statement-II : If $f( x )$ is continuous and increasing in [0, 1], then $ \displaystyle\sum_{ r =0}^{ n -1} \frac{1}{ n } f\left(\frac{ r }{ n }\right)<\int\limits_0^1 f( x ) dx < \displaystyle\sum_{ r =1}^{ n } \frac{1}{ n } f\left(\frac{ r }{ n }\right)$, where $n \in N$
Integrals
Solution: