Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Statement 1: sin-1((1/√e))> tan-1((1/√π)) Statement 2: sin-1 x>tan-1 y for x>y, ∀ x, y ∈(0, 1)
Q.
Statement 1 :
s
i
n
−
1
(
e
1
)
>
t
a
n
−
1
(
π
1
)
Statement 2 :
s
i
n
−
1
x
>
t
a
n
−
1
y
for
x
>
y
,
∀
x
,
y
∈
(
0
,
1
)
2360
188
Inverse Trigonometric Functions
Report Error
A
Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
56%
B
Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
20%
C
Statement -1 is false, Statement-2 is true
7%
D
Statement -1 is true, Statement-2 is false
18%
Solution:
s
i
n
−
1
x
=
t
a
n
−
1
1
−
x
2
x
>
t
a
n
−
1
x
>
t
a
n
−
1
y
∴
statement-2 is true
e
<
π
e
1
>
π
1
by statement-2.
s
i
n
−
1
(
e
1
)
>
t
a
n
−
1
(
e
1
)
>
t
a
n
−
1
(
π
1
)
statement-1 is true