0∫2πtan2xdx=20∫πtan2xdx =2[0∫π/2tan2xdx+0∫π/2tan2(π−x)dx]=40∫π/2tan2xdx ∴ Statement 1 is true
statement-2 0∫nTf(x)dx=0∫Tf(x)dx+T∫2Tf(x)dx+…..+(n−1)T∫nTf(x)dx =0∫Tf(x)dx+0∫Tf(x+T)dx+……+0∫Tf(x+(n−1)T)dx =0∫Tf(x)dx+0∫Tf(x)dx+…..+0∫Tf(x)dx (∵f has a period T) =n0∫Tf(x)dx