We have S=(a+b)+(a2+ab+b2)+(a3+a2b+ab2+b3)+…………∞ =a−b1[(a2−b2)+(a3−b3)+(a4−b4)+……∞) =a−b1((a2+a3+a4+………∞)−(b2+b3+………))=a−b1(1−aa2−1−bb2) =a−b1((1−a)(1−b)a2(1−b)−b2(1−a))=(a−b)(1−a)(1−b)a2−b2+ab2−a2b=(a−b)(1−a)(1−b)(a−b)(a+b)+ab(b−a)=(1−a)(1−b)a+b−ab ∴S1 is false and S2 is true.