Given, ∣∣x2+4x+3∣∣+2x+5=0
Case ∣x2+4x+3>0⇒(x<−3 or x>−1) ∴x2+4x+3+2x+5=0 ⇒x2+6x+8=0 ⇒(x+4)(x+2)=0 ⇒x=−4,−2[ but x<−3 or x>−1] ∴x=−4 is the only solution. ...(i)
Case II x2+4x+3<0⇒(−3<x<−1) ∴−x2−4x−3+2x+5=0 ⇒x2+2x−2=0⇒(x+1)2=3 ⇒∣x+1∣=3 ⇒x=−1−3,−1+3[ but x∈(−3,−1)] ∴x=−1−3 is the only solution . ..(ii)
From Eqs. (i) and (ii), we get x=−4 and (−1−3) are the only solutions.