Given system of equations is x+2y+z=4, −x+y+z=0 and x−3y+z=4
In matrix form, it can be written as ⎣⎡1−1121−3111⎦⎤⎣⎡xyz⎦⎤=⎣⎡404⎦⎤
or AX=B
where, A=⎣⎡1−1121−3111⎦⎤,B=⎣⎡404⎦⎤andX=⎣⎡xyz⎦⎤
Now, ∣A∣=1(1+3)−2(−1−1)+1(3−1)=4+4+2=10 ∵∣A∣=0, hence unique solution exists.
Cofactor matrix of A=⎣⎡4−5120−2253⎦⎤ ∴adj(A)=⎣⎡4−5120−2253⎦⎤T=⎣⎡422−5051−23⎦⎤ A−1=∣A∣1adj(A)=101⎣⎡422−5051−23⎦⎤<br/>Now,X=A−1B=101⎣⎡422−5051−23⎦⎤⎣⎡404⎦⎤ ⎣⎡xyz⎦⎤=101⎣⎡16+0+48+0−88+0+12⎦⎤=101⎣⎡20020⎦⎤=⎣⎡202⎦⎤
On comparing the corresponding elements, we get x=2, y=0 and z=2