Given system of equations is x−y+z=4, x−2y+2z=9 and 2x+y+3z=1, which is written in the matrix form as ⎣⎡112−1−21123⎦⎤⎣⎡xyz⎦⎤=⎣⎡491⎦⎤
or AX=B
where, A=⎣⎡112−1−21123⎦⎤,B=⎣⎡491⎦⎤andX=⎣⎡xyz⎦⎤
Now, ∣A∣=∣∣112−1−21123∣∣=1(−6−2)+1(3−4)+1(1+4)=−8−1+5=−4=0 ∴ A is invertible
So, there exists a unique solution X=A−1B.
Now, cofactor matrix of A=⎣⎡−84011−15−3−1⎦⎤ ∴adjA=⎣⎡−84011−15−3−1⎦⎤T=⎣⎡−81541−30−1−1⎦⎤
So, A−1=∣A∣1(adjA)=4−1⎣⎡−81541−30−1−1⎦⎤
Now, X=A−1B=4−1⎣⎡−81541−30−1−1⎦⎤⎣⎡491⎦⎤ ⇒⎣⎡xyz⎦⎤=4−1⎣⎡−32+36+04+9−120−27−1⎦⎤=4−1⎣⎡412−8⎦⎤=⎣⎡−1−32⎦⎤
On comparing, we get x=−1, y=−3 and z=2