⇒(2x1−x2)1−(2x1−x2)2=0 ⇒2x1−x2=0 or, (2x1−x2)2=1 ⇒x=±1 or, (1−x2)2=4x2
Now, (1−x2)2=4x2 ⇒(1−x2)2−(2x)2=0 ⇒(1−x2−2x)(1−x2+2x)=0 ⇒1−x2−2x=0 or 1−x2+2x=0 ⇒x2+2x−1=0 or x2−2x−1=0 ⇒x=−1±2 or, x=1±2
Hence, x=±1, −1±2, 1±2 are the roots of the given equation.