We have, sin−153x+sin−154x=sin−1x ⇒sin−1{53x1−2516x2+54x1−259x2}=sin−1x ⇒3x25−16x2+4x25−9x2=25x ⇒x=0 or, 325−16x2+425−9x2=25 ⇒425−9x2=25−325−16x2
Squaring both sides, we get 16(25−9x2)=625+9(25−16x2)−15025−16x2 ⇒15025−16x2=450 ⇒25−16x2=3
Again squaring both sides, we get 25−16x2=9 ⇒x=±1
Hence, x=0, 1, −1 are the roots of the given equation.