Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solve the equation tan(x + a) tan(x + b) + tan(x + b) tan(x + c) + tan (x + c) tan(x + a) = 1.
Q. Solve the equation
t
an
(
x
+
a
)
t
an
(
x
+
b
)
+
t
an
(
x
+
b
)
t
an
(
x
+
c
)
+
t
an
(
x
+
c
)
t
an
(
x
+
a
)
=
1
.
2792
224
Trigonometric Functions
Report Error
A
nπ
,
n
∈
I
11%
B
3
nπ
+
6
π
−
(
3
a
+
b
+
c
)
,
n
∈
I
33%
C
3
nπ
−
6
π
,
n
∈
I
44%
D
None of these
11%
Solution:
Given equation is
t
an
(
x
+
b
)
t
an
(
x
+
b
)
+
t
an
(
x
+
b
)
t
an
(
x
+
c
)
+
t
an
(
x
+
c
)
t
an
(
x
+
a
)
=
1
⇒
t
an
(
x
+
b
)
{
t
an
(
x
+
a
)
+
t
an
(
x
+
c
)
}
=
1
−
t
an
(
x
+
c
)
t
an
(
x
+
a
)
⇒
t
an
(
x
+
b
)
{
1
−
t
an
(
x
+
a
)
t
an
(
x
+
c
)
t
an
(
x
+
a
)
+
t
an
(
x
+
c
)
}
=
1
⇒
t
an
(
x
+
a
+
x
+
c
)
=
t
an
(
x
+
b
)
1
=
co
t
(
x
+
b
)
⇒
t
an
(
2
x
+
a
+
c
)
=
t
an
(
2
π
−
(
x
+
b
)
)
⇒
2
x
+
a
+
c
=
nπ
+
2
π
−
(
x
+
b
)
,
n
∈
I
⇒
3
x
=
nπ
+
2
π
−
(
a
+
b
+
c
)
,
n
∈
I
⇒
x
=
3
nπ
+
6
π
−
(
3
a
+
b
+
c
)
,
n
∈
I
.