Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solve for x, tan -1(1/x)=π + tan -1x, 0 < x < 1
Q. Solve for
x
,
tan
−
1
(
1/
x
)
=
π
+
tan
−
1
x
,
0
<
x
<
1
2711
199
J & K CET
J & K CET 2014
Inverse Trigonometric Functions
Report Error
A
n
o
t
d
e
f
in
e
d
48%
B
3
17%
C
±
1
18%
D
None of the above
18%
Solution:
We have,
tan
−
1
(
x
1
)
=
π
+
tan
−
1
x
,
0
<
x
<
1
⇒
tan
−
1
(
x
1
)
−
tan
−
1
x
=
π
⇒
tan
−
1
(
1
+
x
1
.
x
x
1
−
x
)
=
π
⇒
tan
−
1
(
x
(
1
+
1
)
1
−
x
2
)
=
π
⇒
2
x
1
−
x
2
=
tan
π
⇒
2
x
1
−
x
2
=
0
⇒
1
−
x
2
=
0
⇒
x
2
=
1
⇒
x
=
±
1
but given,
0
<
x
<
1