Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of (xdx+ydy/xdy-ydx)=(√a2-x2-y2/x2+y2) is
Q. Solution of
x
d
y
−
y
d
x
x
d
x
+
y
d
y
=
x
2
+
y
2
a
2
−
x
2
−
y
2
is
3498
242
Differential Equations
Report Error
A
x
2
+
y
2
=
a
sin
(
C
+
tan
−
1
x
y
)
40%
B
x
2
+
y
2
=
a
cos
(
C
+
tan
−
1
x
y
)
17%
C
x
2
+
y
2
=
a
tan
(
C
+
tan
−
1
x
y
)
40%
D
none of these
3%
Solution:
Put
x
=
r
cos
θ
,
y
=
r
s
in
θ
⇒
x
2
+
y
2
=
r
2
t
an
θ
=
x
y
∴
d
(
x
2
+
y
2
)
=
d
(
r
2
)
⇒
x
d
x
+
y
d
y
=
r
d
r
and
d
(
x
y
)
=
d
(
t
an
θ
)
⇒
x
2
x
d
y
−
y
d
x
=
se
c
2
θ
d
θ
∴
given diff. eqn. becomes
r
2
co
s
2
θ
.
se
c
2
θ
d
θ
r
d
r
=
r
2
a
2
−
r
2
⇒
r
1
d
θ
d
r
=
r
a
2
−
r
2
⇒
d
θ
d
r
=
a
2
−
r
2
⇒
∫
a
2
−
r
2
d
x
=
∫
d
θ
+
C
⇒
s
i
n
−
1
a
r
=
θ
+
C
⇒
a
r
=
s
in
(
θ
+
C
)
⇒
r
=
a
s
in
(
θ
+
C
)
⇒
x
2
+
y
2
=
a
s
in
[
C
+
t
a
n
−
1
x
y
]