Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the equation 4 sin4 x+ cos4 x = 1 is
Q. Solution of the equation
4
sin
4
x
+
cos
4
x
=
1
is
1603
207
Trigonometric Functions
Report Error
A
x
=
nπ
20%
B
x
=
2
nπ
±
cos
−
1
(
5
3
)
33%
C
x
=
(
2
n
+
1
)
2
π
28%
D
none of these.
19%
Solution:
4
sin
4
x
+
cos
4
x
=
1
⇒
4
(
1
−
cos
2
x
)
2
+
cos
4
x
=
1
⇒
4
(
1
+
cos
4
x
−
2
cos
2
x
)
+
co
s
4
x
−
1
=
0
⇒
5
cos
4
x
−
8
cos
2
x
+
3
=
0
⇒
(
5
cos
2
x
−
3
)
(
cos
2
x
−
1
)
=
0
If
cos
2
x
= 1, then
x
=
nπ
,
n
∈
I
If
cos
2
x
=
2
3
, then
cos
x
=
±
5
3
∴
x
=
2
nπ
±
co
s
−
1
5
3
Hence
x
=
2
nπ
±
cos
−
1
5
3
gives the general value.