Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation y(xy + 2x2y2)dx + x(xy - x2y2)dy = 0 is given by
Q. Solution of the differential equation
y
(
x
y
+
2
x
2
y
2
)
d
x
+
x
(
x
y
−
x
2
y
2
)
d
y
=
0
is given by
4819
196
Differential Equations
Report Error
A
2
l
o
g
∣
x
∣
−
l
o
g
∣
y
∣
−
x
y
1
=
C
0%
B
2
l
o
g
∣
y
∣
−
l
o
g
∣
x
∣
−
x
y
1
=
C
100%
C
2
l
o
g
∣
x
∣
+
l
o
g
∣
y
∣
+
x
y
1
=
C
0%
D
2
l
o
g
∣
y
∣
+
l
o
g
∣
x
∣
+
x
y
1
=
C
0%
Solution:
We have,
(
x
y
2
+
2
x
2
y
3
)
d
x
+
(
x
2
y
−
x
3
y
2
)
d
y
=
0
⇒
x
y
(
y
d
x
+
x
d
y
)
+
x
2
y
2
(
2
y
d
x
−
x
d
y
)
=
0
⇒
x
2
y
2
d
(
x
y
)
+
(
x
2
d
x
−
y
1
d
y
)
=
0
[Dividing by
x
3
y
3
]
On integrating, we get
−
x
y
1
+
2
l
o
g
∣
x
∣
−
l
o
g
∣
y
∣
=
C