The given differential equation is y[xcos(xy)+ysin(xy)]dx −x[ysin(xy)−xcos(xy)]dy=0 ⇒dxdy=x[ysin(xy)−xcos(xy)]y[xcos(xy)+ysin(xy)]
Putting y=vx, ⇒dxdy=v+xdxdv in Eq... (i), we get v+xdxdv=x[vxsinv−xcosv]vx[xcosv+vxsinv] ⇒xdxdv=vxsinv−xcosvvxcosv+v2xsinv−v ⇒xdxdv =vxsinv−xcosvvxcosv+v2xsinv−v2xsinv+xvcosv ⇒xdxdv=xvsinv−xcosv2xvcosv ⇒vcosvv(sinv−cosv)dv=2xdx
Integrating both sides, we get −∫vcosv(cosv−vsinv)dv=2∫xdx ⇒−log∣vcosv∣=2log∣x∣+logc ⇒log∣∣vcosv1∣∣=log∣∣x2∣∣+logc ⇒vcosv1=cx2 ⇒yxsec(xy)=cx2 ⇒xycos(xy)=c1 ⇒xycos(xy)=k,(k=c1)