Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation xy(dy/dx)=(1 + y2/1 + x2)(1 + x + x2) , given that x=1,y=0 is
Q. Solution of the differential equation
x
y
d
x
d
y
=
1
+
x
2
1
+
y
2
(
1
+
x
+
x
2
)
, given that
x
=
1
,
y
=
0
is
523
152
NTA Abhyas
NTA Abhyas 2022
Report Error
A
ℓ
n
1
+
y
2
=
ℓ
n
x
+
t
a
n
−
1
x
−
2
π
B
l
n
(
x
2
1
+
y
2
)
=
2
(
t
an
)
−
1
x
−
2
π
C
ℓ
n
(
x
2
1
+
y
2
)
=
4
π
−
2
(
t
an
)
−
1
x
D
ℓ
n
(
x
2
1
+
y
2
)
=
(
t
an
)
−
1
x
−
4
π
Solution:
∫
1
+
y
2
y
d
y
=
∫
x
(
1
+
x
2
)
1
+
x
+
x
2
d
x
2
1
ℓ
n
(
1
+
y
2
)
=
tan
−
1
x
+
ℓ
n
x
+
c
⇒
ℓ
n
(
x
2
1
+
y
2
)
=
2
tan
−
1
x
+
c