The given differential equation is xdy−ydx−x2+y2dx=0 ⇒xdy=(y+x2+y2)dx ⇒dxdy=x(y+x2+y2)
This is the linear differential equation.
Put y = vx, so that dxdy=v+xdxdy.Then v+xdxdy=xvx+x2+v2x2 ⇒v+xdxdy=v+1+v2 1+v2dv=xdx
Integrating both sides, we get ∫1+v2dv=∫xdx ⇒log(v+1+v2)=logx+logC ⇒v+1+v2=Cx ⇒xy+1+x2y2=Cx[∵y=vx] y+x2+y2=Cx2