Let x+y=u. Then, 1+dxdy=dxdu.
So, the given differential equation becomes (u−2u−1)(dxdu−1)=u+2u+1 ⇒dxdu−1=(u+2u+1)(u−1u−2) ⇒dxdu=u2+u−2u2−u−2+1 ⇒u2−2u2+u−2du=2dx ⇒(1+u2−2u)du=2dx…(i) ⇒u+21log∣∣u2−2∣∣=2x+C (Integrating) ⇒(x+y)+21log∣∣(x+y)2−2∣∣=2x+C ⇒2(y−x)+log∣∣(x+y)2−2∣∣=2C…(ii)
When x=1, y=1, we have log2=2C
On substituting the value of C in equation (ii), we get 2(y−x)+log∣∣(x+y)2−2∣∣=log2 ⇒2(y−x)+log∣∣2(x+y)2−2∣∣=0