Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation, x2 (dy/dx)⋅ cos (1/x)-y sin (1/x)=-1, where y →-1 as x →∞, is
Q. Solution of the differential equation,
x
2
d
x
d
y
⋅
cos
x
1
−
y
s
in
x
1
=
−
1
, where
y
→
−
1
as
x
→
∞
, is
2961
190
Differential Equations
Report Error
A
y
=
s
in
x
1
−
cos
x
1
100%
B
y
=
x
s
in
x
1
x
+
1
0%
C
y
=
cos
x
1
+
s
in
x
1
0%
D
y
=
x
cos
x
1
x
+
1
0%
Solution:
The given equation can be written as,
d
x
d
y
−
x
2
y
t
an
(
x
1
)
=
−
sec
(
x
1
)
⋅
x
2
1
I
.
F
.
=
e
−
∫
(
x
2
1
)
t
an
x
1
d
x
=
sec
(
x
1
)
⇒
y
⋅
sec
(
x
1
)
=
−
∫
se
c
2
(
x
1
)
x
2
1
d
x
=
t
an
(
x
1
)
+
C
⇒
y
=
s
in
(
x
1
)
+
C
cos
(
x
1
)
If
y
→
−
1
and
x
→
∞
, then
C
=
−
1
⇒
y
=
s
in
(
x
1
)
−
cos
(
x
1
)