Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation (dy/dx)+(y/x)= sin x is:
Q. Solution of the differential equation
d
x
d
y
+
x
y
=
sin
x
is:
1959
211
KEAM
KEAM 2005
Report Error
A
x
(
y
+
cos
x
)
=
sin
x
+
c
B
x
(
y
−
cos
x
)
=
sin
x
+
c
C
x
(
y
cos
x
)
=
sin
x
+
c
D
x
(
y
−
cos
x
)
=
cos
x
+
c
E
x
(
y
+
cos
x
)
=
cos
x
+
c
Solution:
∵
d
x
d
y
+
x
y
=
sin
x
Here,
P
=
x
1
and
Q
=
sin
x
∴
I
F
=
e
∫
p
d
x
=
e
∫
1/
x
d
x
=
x
∴
Solution is
y
(
I
F
)
=
∫
Q
(
I
F
)
d
x
+
c
⇒
y
.
x
=
∫
x
sin
x
d
x
+
c
⇒
x
y
=
−
x
cos
x
+
sin
x
+
c
⇒
x
(
y
+
cos
x
)
=
sin
x
+
c