Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation (dy/dx)+(3x+2y-5/2x+3y-5)=0 is
Q. Solution of the differential equation
d
x
d
y
+
2
x
+
3
y
−
5
3
x
+
2
y
−
5
=
0
is
2748
220
Differential Equations
Report Error
A
3
x
2
+
4
x
y
+
3
y
2
−
10
x
−
10
y
=
k
38%
B
x
2
+
4
x
y
−
y
2
−
4
x
+
6
y
=
k
12%
C
(
x
+
2
y
)
2
+
3
y
=
k
31%
D
none of these.
19%
Solution:
Put
x
=
X
+
h
,
y
=
Y
+
k
∴
d
x
=
d
X
,
d
y
=
d
Y
⇒
d
x
d
y
=
d
X
d
Y
d
X
d
Y
+
2
X
+
3
Y
+
2
h
+
3
k
−
5
3
X
+
2
Y
+
3
h
+
2
k
−
5
=
0
Put
3
h
+
2
k
−
5
=
0
2
h
+
3
k
−
5
=
0
∴
5
h
=
5
k
=
5
1
∴
h
=
1
,
k
=
1
∴
d
X
d
Y
+
2
X
+
3
Y
3
X
+
2
Y
=
0
Put
Y
=
v
X
∴
v
+
d
X
X
d
v
+
2
+
3
v
3
+
2
v
=
0
∴
X
d
X
d
v
+
2
+
3
v
3
+
2
v
+
2
v
+
3
v
2
=
0
∴
3
v
2
+
4
v
+
3
3
v
+
2
d
v
+
X
d
X
=
0
⇒
3
v
2
+
4
v
+
3
6
v
+
4
d
v
+
X
2
d
X
=
0
∴
l
o
g
(
3
v
2
+
4
v
+
3
)
+
2
l
o
g
X
=
l
o
g
C
⇒
l
o
g
(
3
X
2
Y
2
+
4
X
Y
+
3
)
+
l
o
g
X
2
=
l
o
g
C
⇒
l
o
g
(
3
Y
2
+
4
Y
X
+
3
X
2
)
=
l
o
g
C
⇒
3
Y
2
+
4
Y
X
+
3
X
2
=
C
⇒
3
(
y
−
1
)
2
+
4
(
y
−
1
)
(
x
−
1
)
+
3
(
x
−
1
)
2
=
C
1
⇒
30
(
x
2
+
y
2
)
+
4
x
y
−
10
(
x
+
y
)
=
k
Where
k
=
C
1
−
7