Given, edy/dx=x
Taking logarithm on both sides, we get logedydx=logx dxdy= = log {\,}x dy=logxdx
On integrating , we get ∫dy=∫logxdx =logx∫1dx=∫[dxdlogx∫1dx]dx =xlogx−∫x1×xdx =xlogx−∫dx =xlogx−x y=x(logx−l)+C…(i)
when x=1 and y=0 ⇒0=1(log1−1)+C ⇒0=(0−1)+C ⇒C=1 ∴ Eq. (i) becomes y=x(logx−1)+1