As (x2−2x+2y2)dx=−2xydy ⇒2xydxdy+2y2=2x−x2 ⇒x(2ydxdy)+2y2=2x−x2
By putting y2=v ⇒2y⋅dxdy=dxdv ⇒xdxdv+2v=2x−x2 ⇒dxdv+v(x2)=2−x I.F.=e∫x2dx=x2
Now, required solution is vx2=∫x2(2−x)dx vx2=32x3−4x4+c ⇒v=32x−41x2+x2c ∴y2=32x−41x2+x2c which is required solution.