Rearranging the terms of equation, we get dxdt−tg(x)g′(x)=−g(x)t2 ⇒−t21dxdt+t1g(x)g′(x)=g(x)1…(1)
Let z=t1⇒−t21dxdt=dxdz
Thus, from (i) we obtain dxdz+g(x)g′(x)z=g(x)1
which is clearly linear in z and dxdz with
I.F. =e∫g(x)g′(x)dx=elog[g(x)]=g(x) ⇒ Thus, complete solution is z⋅g(x)=∫g(x)⋅g(x)1dx+C ⇒t1g(x)=x+c ⇒x+cg(x)=t