sinax+cosax=2sin(ax+4π)
So, fundamental period =∣a∣2π
Let, T be the fundamental period of ∣sinx∣+∣cosx∣
So ∣sin(x+T)∣+∣cos(x+T)∣=∣sinx∣+∣cosx∣.
Squaring both sides, we get, 1+∣sin(2x+2T)∣=1+∣sin2x∣
Therefore, the fundamental period of ∣sinx∣+∣cosx∣ is 2π
Hence, ∣a∣2π=2π ⇒a=±4