Let I=0∫π/2f(sin2x)sinxdx....(i)
Then, I=0∫π/2f[sin2(2π−x)]sin(2π−x)dx =0∫π/2f[sin2x]⋅cosxdx....(ii)
On adding Eqs. (i) and (ii), we get 2I=0∫π/2f(sin2x)(sinx+cosx)dx =20∫π/4f(sin2x)(sinx+cosx)dx =220∫π/4f(sin2x)sin(x+4π)dx =220∫π/4f(sin2(4π−x))sin(4π−x+4π)dx =220∫π/4f(cos2x)cosxdx ∴I=20∫π/4f(cos2x)cosxdx
Hence, 0∫π/2f(sin2x)⋅sinxdx=20∫π/4f(cos2x)cosxdx