Q.
Set of values of ' K ' for which roots of the quadratic x2β(2Kβ1)x+K(Kβ1)=0 are -
289
164
Complex Numbers and Quadratic Equations
Report Error
Solution:
(A)
Expression is (x2+(K+Kβ1)x+K(Kβ1)=0
β(xβK)(xβK+1)=0
βx=KΒ orΒ x=Kβ1
βΒ greaterΒ partΒ <2βK<2
(B) Opposite sign (acβ<0)βK(Kβ1)<0
βKβ(0,1)
(C) K(Kβ1)>0βKβ(ββ,0)βͺ(1,β)
(D) Kβ1>2βK>3βKβ(3,β)